With the range and sensitivity of algorithmic decisions expanding at a break-neck speed, it is imperative that we aggressively investigate fairness and bias in decision-making programs. First, we show that a number of recently proposed formal definitions of fairness can be encoded as probabilistic program properties. Second, with the goal of enabling rigorous reasoning about fairness, we design a novel technique for verifying probabilistic properties that admits a wide class of decision-making programs. Third, we present FairSquare, the first verification tool for automatically certifying that a program meets a given fairness property. We evaluate FairSquare on a range of decision-making programs. Our evaluation demonstrates FairSquare’s ability to verify fairness for a range of different programs, which we show are out-of-reach for state-of-the-art program analysis techniques.

The workshop was held on January 11th and 12th.

Logic has proved in the last decades a powerful tool in understanding complex systems. It is instrumental in the development of formal methods, which are mathematically based techniques obsessing on hard guarantees. Learning is a pervasive paradigm which has seen tremendous success recently. The use of statistical approaches yields practical solutions to problems which yesterday seemed out of reach. These two mindsets should not be kept apart, and many efforts have been made recently to combine the formal reasoning offered by logic and the power of learning.

The goal of this workshop is to bring together expertise from various areas to try and understand the opportunities offered by combining logic and learning.

There are 12 invited speakers and a light programme (less than 5h per day) so as to give enough time for discussions.

Add comment

Your email address will not be published. Required fields are marked *

Categories

All Topics