COMPSCI 188, LEC 001 – Pieter Abbeel, Daniel Klein
Copyright @2018 UC Regents; all rights reserved
“Slides (from 2018): https://inst.eecs.berkeley.edu/~cs188/fa18
Latest website: https://inst.eecs.berkeley.edu/~cs188
More resources: http://ai.berkeley.edu
00:00 Setup [no content] 04:17 ML Intro
06:44 Classification: Spam
13:50 Classification: Digits
18:26 Naive Bayes Model-Based Classification
25:44 Computing Probabilities from Data
29:24 Naive Bayes for Text
36:08 Spam Classification Example
42:59 Break [no content] 47:30 Training and Testing
54:11 ML Concepts
1:02:06 Generalization and Overfitting
1:09:28 Maximum Likelihood Parameter Estimation
1:14:51 Unseen Events, Laplace Smoothing
1:20:20 Tuning, Errors
1:23:15 End [no content]”
Add comment