Abstract

Most logicians and theoretical computer scientists are familiar with Alan Turing’s 1936 seminal paper setting the stage for the foundational (discrete) theory of computation. Most however remain unaware of Turing’s 1948 seminal paper which introduces the notion of condition, setting the stage for a natural theory of complexity for the “other theory of computation.”

Computational mathematics, the “other theory of computation,” emanates from the classical tradition of numerical analysis, equation solving and the continuous mathematics of calculus.

This talk will recognize Alan Turing’s work in the foundations of numerical computation (in particular, his 1948 paper “Rounding-Off Errors in Matrix Processes”), its influence in complexity theory today, and how it provides a unifying concept for the two major traditions of the Theory of Computation.

It is based on a plenary talk given on the eve of Turing’s 100th birthday in June 2012 at the Turing Centenary Conference at the University of Cambridge.

Biography

Lenore Blum (PhD, MIT) is distinguished career professor of Computer Science at Carnegie Mellon University and Founding Director of Project Olympus, an innovation center bridging the gap between cutting-edge university research/innovation and economy-promoting commercialization. Project Olympus has been catalytic in the Pittsburgh renaissance and is a good example of Blum’s determination to make a real difference in the academic community and the world beyond.

Lenore is internationally recognized for her work in increasing the participation of girls and women in Science, Technology, Engineering, and Math (STEM) fields. She was a founder of the Association for Women in Mathematics and recipient of the US Presidential Award for Excellence in Science, Mathematics, and Engineering Mentoring. At Carnegie Mellon, Lenore founded the Women@SCS program, where women comprise almost half of new majors in computer science.

Lenore’s research, from her early work in model theory and differential fields (logic and algebra) to her more recent work in developing a theory of computation and complexity over the real numbers (mathematics and computer science), has focused on merging seemingly unrelated areas. The latter work, founding a theory of computation and complexity over continuous domains, forms a theoretical basis for scientific computation.

On the eve of Alan Turing’s 100th birthday in June 2012, she was plenary speaker at the Turing Centenary Celebration at the University of Cambridge, England, demonstrating how a lesser known Turing paper is fundamental to this theory.

Lenore is a Fellow of the American Association for the Advancement of Science and an Inaugural Fellow of the American Mathematical Society.

#TuringLectures

Add comment

Your email address will not be published. Required fields are marked *

Categories

All Topics