Language learning in humans and machines: making connections to make progress: Sharon Goldwater
Talk title: Language learning in humans and machines: making connections to make progress
Synopsis: Current language processing methods are resource-intensive and available for only a tiny fraction of the world’s 5000 or more languages, mainly those spoken in large rich countries. This talk will argue that in order to solve this problem, we need a
better understanding of how humans learn and represent language in our minds, and we need to consider how human-like learning biases can be built into computational systems. Sharon Goldwater will illustrate these ideas using examples from her own research. She will discuss why language is such a difficult problem, what we know about human language learning, and then show how her own work has taken inspiration from that to develop better methods for computational language learning.
#aiattheturing
Add comment