In this tutorial, we’ll learn how to perform RAG on audio data using LangChain and Python.
APIs:
– AssemblyAI API key: https://www.assemblyai.com/dashboard/signup
– OpenAI API key: https://openai.com/blog/openai-api
Resources:
– Code: https://github.com/AssemblyAI-Examples/rag-langchain-audio-data
– Blog: https://www.assemblyai.com/blog/retrieval-augmented-generation-audio-langchain/
– LangChain webinar series: https://www.youtube.com/@LangChain
Tools used:
– AssemblyAI: https://www.assemblyai.com/
– LangChain: https://www.langchain.com/
– Hugging Face: https://huggingface.co/
– Chroma: https://www.trychroma.com/
– OpenAI: https://openai.com/
▬▬▬▬▬▬▬▬▬▬▬▬ CONNECT ▬▬▬▬▬▬▬▬▬▬▬▬
🖥️ Website: https://www.assemblyai.com/?utm_source=youtube&utm_medium=referral&utm_campaign=yt_ry_1
📈 Newsletter: https://www.assemblyai.com/subscribe
🐦 Twitter: https://twitter.com/AssemblyAI
🦾 Discord: https://discord.gg/Cd8MyVJAXd
▶️ Subscribe: https://www.youtube.com/c/AssemblyAI?sub_confirmation=1
🔥 We’re hiring! Check our open roles: https://www.assemblyai.com/careers
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
#MachineLearning #deeplearning
0:00 Introduction
0:34 Repo and Blog
0:46 What is Retrieval Augmented Generation (RAG)?
0:59 Implementation overview
1:42 Environment setup
2:54 Imports
4:10 Specifying audio files
4:35 Audio document loader
5:12 Text splitting
6:04 Setting metadata
6:29 Text embedding
6:52 Building the Chroma database
7:10 Building the QA LangChain
7:50 Make application loop
8:50 Running the application
9:28 Asking a question and RAG response
Add comment