What can be done to enable more community members to easily access large models and large-scale applications? In this session, we investigate efforts to solve the questions mentioned above. Firstly, diverse parallelization is an important tool to improve the efficiency of large model training and inference. Heterogeneous memory management can help enhance the model accommodation capacity of processors like GPUs.
Furthermore, user-friendly DL systems for large models significantly reduce the specialized background knowledge users need, allowing more community members to get started with larger models more efficiently. We will provide participants with a system-level open-source solution, Colossal-AI. More information can be found at https://github.com/hpcaitech/ColossalAI.
Talk by: James Demmel and Yang You
Here’s more to explore:
LLM Compact Guide: https://dbricks.co/43WuQyb
Big Book of MLOps: https://dbricks.co/3r0Pqiz
Connect with us: Website: https://databricks.com
Twitter: https://twitter.com/databricks
LinkedIn: https://www.linkedin.com/company/databricks
Instagram: https://www.instagram.com/databricksinc
Facebook: https://www.facebook.com/databricksinc
Add comment